Price Prediction By Nearest Neighbor Indicator For MT5
Table Of Contents:
- Price Prediction By Nearest Neighbor Indicator For MT5
- Installation af Price Prediction By Nearest Neighbor Indicator For MT5
- Parametre for Price Prediction By Nearest Neighbor Indicator For MT5
- Buffere af Price Prediction By Nearest Neighbor Indicator For MT5
- Vigtigste dele af koden
Price Prediction By Nearest Neighbor Indicator For MT5 trækker de forventede fremtidige prisbevægelser, der beregnes ud fra de nylige Price Prediction By Nearest Neighbor Indicator For MT5 . De nylige prismønstre er såkaldte nærmeste naboer, der gav navnet på denne indikator. Prismønstrene bruges til at beregne en vægtet afstemning. Fra dette resultat trækkes de fremtidige prisbevægelser på diagrammet.
Installation af Price Prediction By Nearest Neighbor Indicator For MT5
Når du har hentet indikatoren via formularen ovenfor, skal du pakke zip-filen ud. Derefter skal du kopiere filen nearest_neighbor.mq5 til mappen MQL5Indicators for din MT5 installation. Efter dette skal du genstarte MT5, så vil du være i stand til at se indikatoren på listen over indikatorer.
Parametre for Price Prediction By Nearest Neighbor Indicator For MT5
Price Prediction By Nearest Neighbor Indicator For MT5 har 2 parametre, der skal konfigureres.
input int Npast =300; // Past bars in a pattern input int Nfut =50; // Future bars in a pattern (must be < Npast)
Buffere af Price Prediction By Nearest Neighbor Indicator For MT5
Price Prediction By Nearest Neighbor Indicator For MT5 leverer 2 buffere.
SetIndexBuffer(0,ynn,INDICATOR_DATA); SetIndexBuffer(1,xnn,INDICATOR_DATA);
Vigtigste dele af koden
int OnCalculate(const int rates_total, const int prev_calculated, const datetime &Time[], const double &Open[], const double &High[], const double &Low[], const double &Close[], const long &tick_volume[], const long &volume[], const int &spread[]) { //--- check for insufficient data and new bar int bars=rates_total; if(bars lt Npast+Nfut) { Print("Error: not enough bars in history!"); return(0); } if(PrevBars==bars) return(rates_total); PrevBars=bars; //--- initialize indicator buffers to EMPTY_VALUE ArrayInitialize(xnn,EMPTY_VALUE); ArrayInitialize(ynn,EMPTY_VALUE); //--- main cycle //--- compute correlation sums for current pattern //--- current pattern starts at i=bars-Npast and ends at i=bars-1 double my=0.0; double syy=0.0; for(int i=0;i lt Npast;i++) { double y=Open[bars-Npast+i]; my +=y; syy+=y*y; } double deny=syy*Npast-my*my; if(deny lt =0) { Print("Zero or negative syy*Npast-my*my = ",deny); return(0); } deny=MathSqrt(deny); //--- compute correlation sums for past patterns //--- past patterns start at k=0 and end at k=bars-Npast-Nfut ArrayResize(mx,bars-Npast-Nfut+1); ArrayResize(sxx,bars-Npast-Nfut+1); ArrayResize(denx,bars-Npast-Nfut+1); int kstart; if(FirstTime) kstart=0; else kstart=bars-Npast-Nfut; FirstTime=false; for(int k=kstart;k lt =bars-Npast-Nfut;k++) { if(k==0) { mx[0] =0.0; sxx[0]=0.0; for(int i=0;i lt Npast;i++) { double x=Open[i]; mx[0] +=x; sxx[0]+=x*x; } } else { double xnew=Open[k+Npast-1]; double xold=Open[k-1]; mx[k] =mx[k-1]+xnew-xold; sxx[k]=sxx[k-1]+xnew*xnew-xold*xold; } denx[k]=sxx[k]*Npast-mx[k]*mx[k]; } //--- compute cross-correlation sums and correlation coefficients and find NN double sxy[]; ArrayResize(sxy,bars-Npast-Nfut+1); double b,corrMax=0; int knn=0; for(int k=0;k lt =bars-Npast-Nfut;k++) { //--- Compute sxy sxy[k]=0.0; for(int i=0;i lt Npast;i++) sxy[k]+=Open[k+i]*Open[bars-Npast+i]; //--- Compute corr coefficient if(denx[k] lt =0) { Print("Zero or negative sxx[k]*Npast-mx[k]*mx[k]. Skipping pattern # ",k); continue; } double num=sxy[k]*Npast-mx[k]*my; double corr=num/MathSqrt(denx[k])/deny; if(corr gt corrMax) { corrMax=corr; knn=k; b=num/denx[k]; } } Print("Nearest neighbor is dated ",Time[knn]," and has correlation with current pattern of ",corrMax); //--- Compute xm[] and ym[] by scaling the nearest neighbor double delta=Open[bars-1]-b*Open[knn+Npast-1]; for(int i=0;i lt Npast+Nfut;i++) { if(i lt =Npast-1) xnn[bars-Npast+i]=b*Open[knn+i]+delta; if(i gt =Npast-1) ynn[bars-Npast-Nfut+i]=b*Open[knn+i]+delta; } return(rates_total); } //+------------------------------------------------------------------+