Price Prediction By Nearest Neighbor Indicator For MT5
Table Of Contents:
- Price Prediction By Nearest Neighbor Indicator For MT5
- Instalar la Price Prediction By Nearest Neighbor Indicator For MT5
- Parámetros de la Price Prediction By Nearest Neighbor Indicator For MT5
- Buffers of the Price Prediction By Nearest Neighbor Indicator For MT5
- Partes principales del código
La Price Prediction By Nearest Neighbor Indicator For MT5 dibuja los movimientos de precios futuros anticipados que se calculan a partir de patrones de precios recientes. Los patrones de precios recientes se denominan vecinos más cercanos, que dieron nombre a este indicador. Los patrones de precios se utilizan para calcular una votación ponderada. A partir de ese resultado, los movimientos de precios futuros se dibujan en el gráfico.
Instalar la Price Prediction By Nearest Neighbor Indicator For MT5
Después de descargar el indicador a través del formulario anterior, debe descomprimir el archivo zip. Luego, debe copiar el archivo nearest_neighbor.mq5 en la carpeta MQL5Indicators de su instalación MT5 . Después de eso, reinicie MT5 y luego podrá ver el indicador en la lista de indicadores.
Parámetros de la Price Prediction By Nearest Neighbor Indicator For MT5
Price Prediction By Nearest Neighbor Indicator For MT5 tiene parámetros 2 para configurar.
input int Npast =300; // Past bars in a pattern input int Nfut =50; // Future bars in a pattern (must be < Npast)
Buffers of the Price Prediction By Nearest Neighbor Indicator For MT5
Price Prediction By Nearest Neighbor Indicator For MT5 proporciona buffers 2 .
SetIndexBuffer(0,ynn,INDICATOR_DATA); SetIndexBuffer(1,xnn,INDICATOR_DATA);
Partes principales del código
int OnCalculate(const int rates_total, const int prev_calculated, const datetime &Time[], const double &Open[], const double &High[], const double &Low[], const double &Close[], const long &tick_volume[], const long &volume[], const int &spread[]) { //--- check for insufficient data and new bar int bars=rates_total; if(bars lt Npast+Nfut) { Print("Error: not enough bars in history!"); return(0); } if(PrevBars==bars) return(rates_total); PrevBars=bars; //--- initialize indicator buffers to EMPTY_VALUE ArrayInitialize(xnn,EMPTY_VALUE); ArrayInitialize(ynn,EMPTY_VALUE); //--- main cycle //--- compute correlation sums for current pattern //--- current pattern starts at i=bars-Npast and ends at i=bars-1 double my=0.0; double syy=0.0; for(int i=0;i lt Npast;i++) { double y=Open[bars-Npast+i]; my +=y; syy+=y*y; } double deny=syy*Npast-my*my; if(deny lt =0) { Print("Zero or negative syy*Npast-my*my = ",deny); return(0); } deny=MathSqrt(deny); //--- compute correlation sums for past patterns //--- past patterns start at k=0 and end at k=bars-Npast-Nfut ArrayResize(mx,bars-Npast-Nfut+1); ArrayResize(sxx,bars-Npast-Nfut+1); ArrayResize(denx,bars-Npast-Nfut+1); int kstart; if(FirstTime) kstart=0; else kstart=bars-Npast-Nfut; FirstTime=false; for(int k=kstart;k lt =bars-Npast-Nfut;k++) { if(k==0) { mx[0] =0.0; sxx[0]=0.0; for(int i=0;i lt Npast;i++) { double x=Open[i]; mx[0] +=x; sxx[0]+=x*x; } } else { double xnew=Open[k+Npast-1]; double xold=Open[k-1]; mx[k] =mx[k-1]+xnew-xold; sxx[k]=sxx[k-1]+xnew*xnew-xold*xold; } denx[k]=sxx[k]*Npast-mx[k]*mx[k]; } //--- compute cross-correlation sums and correlation coefficients and find NN double sxy[]; ArrayResize(sxy,bars-Npast-Nfut+1); double b,corrMax=0; int knn=0; for(int k=0;k lt =bars-Npast-Nfut;k++) { //--- Compute sxy sxy[k]=0.0; for(int i=0;i lt Npast;i++) sxy[k]+=Open[k+i]*Open[bars-Npast+i]; //--- Compute corr coefficient if(denx[k] lt =0) { Print("Zero or negative sxx[k]*Npast-mx[k]*mx[k]. Skipping pattern # ",k); continue; } double num=sxy[k]*Npast-mx[k]*my; double corr=num/MathSqrt(denx[k])/deny; if(corr gt corrMax) { corrMax=corr; knn=k; b=num/denx[k]; } } Print("Nearest neighbor is dated ",Time[knn]," and has correlation with current pattern of ",corrMax); //--- Compute xm[] and ym[] by scaling the nearest neighbor double delta=Open[bars-1]-b*Open[knn+Npast-1]; for(int i=0;i lt Npast+Nfut;i++) { if(i lt =Npast-1) xnn[bars-Npast+i]=b*Open[knn+i]+delta; if(i gt =Npast-1) ynn[bars-Npast-Nfut+i]=b*Open[knn+i]+delta; } return(rates_total); } //+------------------------------------------------------------------+