Price Prediction By Nearest Neighbor Indicator For MT5
Table Of Contents:
- Price Prediction By Nearest Neighbor Indicator For MT5
- Installation du Price Prediction By Nearest Neighbor Indicator For MT5
- Paramètres du Price Prediction By Nearest Neighbor Indicator For MT5
- Tampons du Price Prediction By Nearest Neighbor Indicator For MT5
- Parties principales du code
L' Price Prediction By Nearest Neighbor Indicator For MT5 dessine les Price Prediction By Nearest Neighbor Indicator For MT5 prix futures anticipées qui sont calculées à partir des modèles de prix récents. Les modèles de prix récents sont ce qu'on appelle les voisins les plus proches qui ont donné le nom à cet indicateur. Les modèles de prix sont utilisés pour calculer un vote pondéré. A partir de ce résultat, les mouvements de prix futurs sont tirés sur le graphique.
Installation du Price Prediction By Nearest Neighbor Indicator For MT5
Après avoir téléchargé l'indicateur via le formulaire ci-dessus, vous devez décompresser le fichier zip. Ensuite, vous devez copier le fichier nearest_neighbor.mq5 dans le dossier MQL5Indicators de votre installation MT5 . Ensuite, redémarrez MT5 et vous pourrez voir l’indicateur dans la liste des indicateurs.
Paramètres du Price Prediction By Nearest Neighbor Indicator For MT5
Price Prediction By Nearest Neighbor Indicator For MT5 a des paramètres 2 à configurer.
input int Npast =300; // Past bars in a pattern input int Nfut =50; // Future bars in a pattern (must be < Npast)
Tampons du Price Prediction By Nearest Neighbor Indicator For MT5
Le Price Prediction By Nearest Neighbor Indicator For MT5 2 Price Prediction By Nearest Neighbor Indicator For MT5 fournit des tampons 2 .
SetIndexBuffer(0,ynn,INDICATOR_DATA); SetIndexBuffer(1,xnn,INDICATOR_DATA);
Parties principales du code
int OnCalculate(const int rates_total, const int prev_calculated, const datetime &Time[], const double &Open[], const double &High[], const double &Low[], const double &Close[], const long &tick_volume[], const long &volume[], const int &spread[]) { //--- check for insufficient data and new bar int bars=rates_total; if(bars lt Npast+Nfut) { Print("Error: not enough bars in history!"); return(0); } if(PrevBars==bars) return(rates_total); PrevBars=bars; //--- initialize indicator buffers to EMPTY_VALUE ArrayInitialize(xnn,EMPTY_VALUE); ArrayInitialize(ynn,EMPTY_VALUE); //--- main cycle //--- compute correlation sums for current pattern //--- current pattern starts at i=bars-Npast and ends at i=bars-1 double my=0.0; double syy=0.0; for(int i=0;i lt Npast;i++) { double y=Open[bars-Npast+i]; my +=y; syy+=y*y; } double deny=syy*Npast-my*my; if(deny lt =0) { Print("Zero or negative syy*Npast-my*my = ",deny); return(0); } deny=MathSqrt(deny); //--- compute correlation sums for past patterns //--- past patterns start at k=0 and end at k=bars-Npast-Nfut ArrayResize(mx,bars-Npast-Nfut+1); ArrayResize(sxx,bars-Npast-Nfut+1); ArrayResize(denx,bars-Npast-Nfut+1); int kstart; if(FirstTime) kstart=0; else kstart=bars-Npast-Nfut; FirstTime=false; for(int k=kstart;k lt =bars-Npast-Nfut;k++) { if(k==0) { mx[0] =0.0; sxx[0]=0.0; for(int i=0;i lt Npast;i++) { double x=Open[i]; mx[0] +=x; sxx[0]+=x*x; } } else { double xnew=Open[k+Npast-1]; double xold=Open[k-1]; mx[k] =mx[k-1]+xnew-xold; sxx[k]=sxx[k-1]+xnew*xnew-xold*xold; } denx[k]=sxx[k]*Npast-mx[k]*mx[k]; } //--- compute cross-correlation sums and correlation coefficients and find NN double sxy[]; ArrayResize(sxy,bars-Npast-Nfut+1); double b,corrMax=0; int knn=0; for(int k=0;k lt =bars-Npast-Nfut;k++) { //--- Compute sxy sxy[k]=0.0; for(int i=0;i lt Npast;i++) sxy[k]+=Open[k+i]*Open[bars-Npast+i]; //--- Compute corr coefficient if(denx[k] lt =0) { Print("Zero or negative sxx[k]*Npast-mx[k]*mx[k]. Skipping pattern # ",k); continue; } double num=sxy[k]*Npast-mx[k]*my; double corr=num/MathSqrt(denx[k])/deny; if(corr gt corrMax) { corrMax=corr; knn=k; b=num/denx[k]; } } Print("Nearest neighbor is dated ",Time[knn]," and has correlation with current pattern of ",corrMax); //--- Compute xm[] and ym[] by scaling the nearest neighbor double delta=Open[bars-1]-b*Open[knn+Npast-1]; for(int i=0;i lt Npast+Nfut;i++) { if(i lt =Npast-1) xnn[bars-Npast+i]=b*Open[knn+i]+delta; if(i gt =Npast-1) ynn[bars-Npast-Nfut+i]=b*Open[knn+i]+delta; } return(rates_total); } //+------------------------------------------------------------------+